Mining for Structural Anomalies in Graph-based Data
نویسندگان
چکیده
In this paper we present graph-based approaches to mining for anomalies in domains where the anomalies consist of unexpected entity/relationship alterations that closely resemble non-anomalous behavior. We introduce three novel algorithms for the purpose of detecting anomalies in all possible types of graph changes. Each of our algorithms focuses on a specific graph change and uses the minimum description length principle to discover those substructure instances that contain anomalous entities and relationships. Using synthetic and real-world data, we evaluate the effectiveness of each of these algorithms in terms of each of the types of anomalies. Each of these algorithms demonstrates the usefulness of examining a graph-based representation of data for the purposes of detecting fraud.
منابع مشابه
Graph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملMicrosoft Word - ISI-EberleHolder - Short Paper 0.5
The ability to mine data represented as a graph has become important in several domains for detecting various structural patterns. One important area of data mining is anomaly detection, but little work has been done in terms of detecting anomalies in graph-based data. In this paper we present graph-based approaches to uncovering anomalies in applications containing information representing pos...
متن کاملUsing a Graph-Based Approach for Discovering Cybercrime
The ability to mine data represented as a graph has become important in several domains for detecting various structural patterns. One important area of data mining is anomaly detection, but little work has been done in terms of detecting anomalies in graph-based data. While there has been some work that has used statistical metrics and conditional entropy measurements, the results have been li...
متن کاملSeparation of Geochemical Anomalies Using Factor Analysis and Concentration-Number (C-N) Fractal Modeling Based on Stream Sediments Data in Esfordi 1:100000 Sheet, Central Iran
The aim of this study is separation of Fe2O3, TiO2 and V2O5 anomalies in Esfordi 1:100,000 sheet which is located in Bafq district, Central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into 5 groups (factors) by factor analysis. The Concentration–Number (C-N) fractal model was used for delineation of the Fe2O3, TiO2 and V2O5 thresholds. According to...
متن کاملIdentification of Geochemical Anomalies Using Fractal and LOLIMOT Neuro-Fuzzy modeling in Mial Area, Central Iran
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry, disseminated, vein-type and polymetallic mineralization arc. The aim of this study is to identify and subsequently determine geochemical anomalies for exploration of Pb, Zn and Cu mineralization in Mial district situated in UDMA. Factor analysis, Concentration-Number (C-N) fractal model and Local Linear Model Tree (...
متن کامل